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Introduction

Introduction

In this module, we explore the properties of eigenvalues, eigenvectors, and some of their
key uses in statistics.

We begin by defining eigenvalues and eigenvectors, and then we demonstrate some of
their key mathematical properties.

In conclusion, we show some key uses:

1 Matrix factorization

2 Least squares approximation

3 Calculation of symmetric powers of symmetric matrices
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Defining Eigenvalues and Eigenvectors

Defining Eigenvalues and Eigenvectors

Definition (Eigenvalues and Eigenvectors)

For a square matrix A, a scalar c and a vector v are an eigenvalue and associated eigenvector,
respectively, if and only if they satisfy the equation,

Av = cv (1)

There are infinitely many solutions to Equation 1 unless some identification constraint is placed
on the size of vector v. For example for any c and v satisfying the equation, c/2 and 2v must
also satisfy the same equation. Consequently in eigenvectors are assumed to be “normalized,”
i.e., satisfy the constraint that v′v = 1. Eigenvalues ci are roots to the determinantal equation

|A− cI| = 0 (2)
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Key Properties of Eigenvalues and Eigenvectors

Key Properties of Eigenvalues and Eigenvectors I

Here are some key properties of eigenvalues and eigenvectors. For n × n matrix A with
eigenvalues ci and associated eigenvectors vi ,

1

Tr (A) =
n∑

i=1

ci

2

|A| =
n∏

i=1

ci

3 Eigenvalues of a symmetric matrix with real elements are all real.

4 Eigenvalues of a positive definite matrix are all positive.
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Key Properties of Eigenvalues and Eigenvectors

Key Properties of Eigenvalues and Eigenvectors II

5 If a n × n symmetric matrix A is positive semidefinite and of rank r , it has exactly r
positive eigenvalues and p − r zero eigenvalues.

6 The nonzero eigenvalues of the product AB are equal to the nonzero eigenvalues of BA.
Hence the traces of AB and BA are equal.

7 The characteristic roots of a diagonal matrix are its diagonal elements.

8 The scalar multiple bA has eigenvalue bci with eigenvector vi .

Proof: Avi = civi implies immediately that (bA)vi = (bci )vi .

9 Adding a constant b to every diagonal element of A creates a matrix A + bI with
eigenvalues ci + b and associated eigenvectors vi .

Proof: (A + bI)vi = Avi + bvi = civi + bvi = (ci + b)vi .
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Key Properties of Eigenvalues and Eigenvectors

Key Properties of Eigenvalues and Eigenvectors III

10 Am has cmi as an eigenvalue, and vi as its eigenvector.

Proof: Consider A2vi = A(Avi ) = A(civi ) = ci (Avi ) = cicivi = c2
i vi . The general case

follows by induction.

11 A−1, if it exists, has 1/ci as an eigenvalue, and vi as its eigenvector.

Proof: Avi = civi = vic . A−1Avi = vi = A−1vici . vi = A−1vici = ciA
−1vi . So

(1/ci )vi = A−1vi .
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Key Properties of Eigenvalues and Eigenvectors

Key Properties of Eigenvalues and Eigenvectors IV

12 For symmetric A, for distinct eigenvalues ci , cj with associated eigenvectors vi , vj , we
have v′ivj = 0.

Proof: Avi = civi , and Avj = cjvj . So v′jAvi = civ
′
jvi and v′iAvj = cjv

′
ivj . But, since a

bilinear form is a scalar, it is equal to its transpose, and, remembering that A = A′,
v′jAvi = v′iAvj . So civ

′
jvi = cjv

′
ivj = cjv

′
jvi . If ci and cj are different, this implies

v′jvi = 0.

13 Eckart-Young Decomposition. For any real, symmetric A, there exists a V such that
V′AV = D,where D is diagonal. Moreover, any real symmetric matrix A can be written
as A = VDV′,where V contains the eigenvectors vi of A in order in its columns, and D
contains the eigenvalues ci of A in the ith diagonal position. (Proof?)
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Key Properties of Eigenvalues and Eigenvectors

Key Properties of Eigenvalues and Eigenvectors V

14 Best Rank-m Least Squares Approximation. Recall from our reading that a set of vectors
is linearly independent if no vector in the set is a linear combination of the others, and
that the rank of a matrix is the the (largest) number of rows and columns that exhibit
linear independence. In general, if we are approximating one symmetric matrix with
another, matrices of higher rank (being less restricted) can do a better job of
approximating a full-rank matrix A than matrices of lower rank. Suppose that the
eigenvectors and eigenvalues of symmetric matrix A are ordered in the matrices V and D
in descending order, so that the first element of D is the largest eigenvalue of A, and the
first column of V is its corresponding eigenvector. Define V∗ as the first m columns of V,
and D∗ as an m ×m diagonal matrix with the corresponding m eigenvalues as diagonal
entries. Then V∗D∗V∗ is a matrix of rank m that is the best possible (in the least squares
sense) rank m approximation of A.
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Key Properties of Eigenvalues and Eigenvectors

Key Properties of Eigenvalues and Eigenvectors VI

15 Consider all possible “normalized quadratic forms in A,” i.e.,

q(xi ) = x′iAxi (3)

with x′ixi = 1.

The maximum of all quadratic forms is achieved with xi = v1, where v1 is the eigenvector
corresponding to the largest eigenvalue of A. The minimum is achieved with xi = vm, the
eigenvector corresponding to the smallest eigenvalue of A. The maxima and minima are
the largest and smallest eigenvalues, respectively.
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Applications of Eigenvalues and Eigenvectors

Applications of Eigenvalues and Eigenvectors
Powers of a Diagonal Matrix

Eigenvalues and eigenvectors have widespread practical application in multivariate statistics. In
this section, we demonstrate a few such applications. First, we deal with the notion of matrix
factorization.

Definition (Powers of a Diagonal Matrix)

Diagonal matrices act much more like scalars than most matrices do. For example, we can
define fractional powers of diagonal matrices, as well as positive powers. Specifically, if
diagonal matrix D has diagonal elements di , the matrix Dx has elements dx

i . If x is negative,
it is assumed D is positive definite. With this definition, the powers of D behave essentially
like scalars. For example, D1/2D1/2 = D.
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Applications of Eigenvalues and Eigenvectors

Applications of Eigenvalues and Eigenvectors
Powers of a Diagonal Matrix

Example (Powers of a Diagonal Matrix)

Suppose we have

D =

[
4 0
0 9

]
Then

D1/2 =

[
2 0
0 3

]
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Applications of Eigenvalues and Eigenvectors

Applications of Eigenvalues and Eigenvectors
Matrix Factorization

Example (Matrix Factorization)

Suppose you have a variance-covariance matrix Σ for some statistical population. Assuming
Σ is positive semidefinite, then (from Result 5), it can be written in the form
Σ = VDV′ = FF′, where F = VD1/2. F is called a “Gram-factor of Σ.”

Gram-factors are not, in general, uniquely defined.

For example, suppose Σ = FF′. Then consider any orthogonal matrix T, such that
TT′ = T′T = I.

There are infinitely many orthogonal matrices T of order 2× 2 and higher. For any such
matrix T, we have Σ = FTT′F′ = F∗F∗′, where F∗ = FT.
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Applications of Eigenvalues and Eigenvectors

Applications of Eigenvalues and Eigenvectors
Matrix Factorization

Gram-factors have some significant applications.

For example, in the field of random number generation, it is relatively easy to generate
pseudo-random numbers that mimic p variables that are independent with zero mean and
unit variance.

But suppose we wish to mimic p variables that are not independent, but have
variance-covariance matrix Σ?

The next example describes one method for doing this.

Example (Simulating Nonindependent Random Numbers)

Given p × 1 random vector x having variance-covariance matrix I. Let F be a Gram-factor of
Σ = FF′. Then y = Fx will have variance-covariance matrix Σ.
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Symmetric Powers of a Symmetric Matrix

Symmetric Powers of a Symmetric Matrix

In certain intermediate and advanced derivations in matrix algebra, reference is made to
“symmetric powers” of a symmetric matrix A, in particular the “symmetric square root” of A,
a symmetric matrix which, when multiplied by itself, yields A.

Example (Symmetric Powers of a Symmetric Matrix)

When investigating properties of eigenvalues and eigenvectors, we pointed out that, for
distinct eigenvalues of a symmetric matrix A , the associated eigenvectors are orthogonal.
Since the eigenvectors are normalized to have a sum of squares equal to 1, it follows that if we
place the eigenvectors in a matrix V, this matrix will be orthogonal, i.e. VV′ = V′V = I. This
fact allows us to create “symmetric powers” of a symmetric matrix very efficiently if we know
the eigenvectors. (continued on next slide . . . )
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Symmetric Powers of a Symmetric Matrix

Symmetric Powers of a Symmetric Matrix

Example (Symmetric Powers of a Symmetric Matrix)

For example, suppose you wish to create a symmetric matrix A1/2 such that A1/2A1/2 = A.
Let diagonal matrix D contain the eigenvalues of A in proper order. Then A = VDV′, and it
is easy to verify that A1/2 = VD1/2V′ has the required properties. To prove that A1/2 is
symmetric, we need simply show that it is equal to its transpose, which is trivial (so long as
you recall that any diagonal matrix is symmetric, and that the transpose of a product of
several matrices is the product of the transposes in reverse order). That A1/2A1/2 = A follows
immediately by substitution, i.e.,

A1/2A1/2 = VD1/2V′VD1/2V′

= VD1/2
[
V′V

]
D1/2V′

= VD1/2 [I]D1/2V′

= VD1/2D1/2V′

= VDV′
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Some Eigenvalue-Eigenvector Calculations in R

Some Eigenvalue-Eigenvector Calculations in R
Extracting Eigenvalues and Eigenvectors

Extracting eigenvalues and eigenvectors in R is straightforward.

Consider the following 3× 3 correlation matrix.

> Rxx <- matrix(c(1, 0.5, 0.4, 0.5, 1, 0.3, 0.4, 0.3, 1), 3, 3)

> Rxx

[,1] [,2] [,3]

[1,] 1.0 0.5 0.4

[2,] 0.5 1.0 0.3

[3,] 0.4 0.3 1.0
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Some Eigenvalue-Eigenvector Calculations in R

Some Eigenvalue-Eigenvector Calculations in R
Extracting Eigenvalues and Eigenvectors

We can extract the eigenvalues and eigenvectors together in a structure with the eigen
command:

> eigendecomp <- eigen(Rxx)

We have saved the eigendecomposition results in the variable eigendecomp.

It turns out the the eigenvalues are in this structure in a matrix called vectors, and the
eigenvalues are in a vector called values.
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Some Eigenvalue-Eigenvector Calculations in R

Some Eigenvalue-Eigenvector Calculations in R
Extracting Eigenvalues and Eigenvectors

> V <- eigendecomp$vectors

> d <- eigendecomp$values

> V

[,1] [,2] [,3]

[1,] 0.6215471 -0.1703679 0.7646267

[2,] 0.5813269 -0.5539601 -0.5959759

[3,] 0.5251078 0.8149252 -0.2452728

> d

[1] 1.8055810 0.7124457 0.4819732
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Some Eigenvalue-Eigenvector Calculations in R

Some Eigenvalue-Eigenvector Calculations in R
Constructing a Gram Factor

Recall that a Gram factor of Rxx, F, can be constructed so that Rxx = FF′. Since
Rxx = VDV′, an obvious choice for F is F = VD1/2. Below we compute F and verify that
it is indeed a Gram-factor of Rxx.

> F = V %*% diag(sqrt(d))

> F

[,1] [,2] [,3]

[1,] 0.8351847 -0.1438016 0.5308366

[2,] 0.7811400 -0.4675783 -0.4137521

[3,] 0.7055974 0.6878498 -0.1702789

> F %*% t(F)

[,1] [,2] [,3]

[1,] 1.0 0.5 0.4

[2,] 0.5 1.0 0.3

[3,] 0.4 0.3 1.0
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Some Eigenvalue-Eigenvector Calculations in R

Some Eigenvalue-Eigenvector Calculations in R
Constructing a Cholesky Factor

A Cholesky factor of Rxx is a Gram-factor that is also a triangular matrix.

Note: The chol function in R departs from the standard convention in that it returns the
upper triangular factor F′ rather than the lower triangular factor F.

So, to create a Gram factor F such that Rxx = FF′, one must transpose the matrix
returned by the chol function.
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Some Eigenvalue-Eigenvector Calculations in R

Some Eigenvalue-Eigenvector Calculations in R
Constructing a Cholesky Factor

Here we demonstrate how to extract a Cholesky factor of Rxx.

We then demonstrate that the matrix we extract is in fact a Gram factor of Rxx.

> F.c = t(chol(Rxx))

> F.c

[,1] [,2] [,3]

[1,] 1.0 0.0000000 0.0000000

[2,] 0.5 0.8660254 0.0000000

[3,] 0.4 0.1154701 0.9092121

> F.c %*% t(F.c)

[,1] [,2] [,3]

[1,] 1.0 0.5 0.4

[2,] 0.5 1.0 0.3

[3,] 0.4 0.3 1.0
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Some Eigenvalue-Eigenvector Calculations in R

Some Eigenvalue-Eigenvector Calculations in R
Constructing a Symmetric Power of a Symmetric Matrix

Here is a function for computing symmetric powers of a symmetric matrix.

> sympower <- function(x, pow) {
+ edecomp <- eigen(x)

+ roots <- edecomp$val

+ v <- edecomp$vec

+ d <- roots^pow

+ if (length(roots) == 1)

+ d <- matrix(d, 1, 1) else d <- diag(d)

+ sympow <- v %*% d %*% t(v)

+ sympow

+ }
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Some Eigenvalue-Eigenvector Calculations in R

Some Eigenvalue-Eigenvector Calculations in R
Constructing a Symmetric Power of a Symmetric Matrix

Below we compute R
1/2
xx , the symmetric square root of Rxx.

> Rxx.half <- sympower(Rxx, 1/2)

> Rxx.half

[,1] [,2] [,3]

[1,] 0.9494977 0.2488098 0.1911747

[2,] 0.2488098 0.9597037 0.1306236

[3,] 0.1911747 0.1306236 0.9728256

> Rxx.half %*% Rxx.half

[,1] [,2] [,3]

[1,] 1.0 0.5 0.4

[2,] 0.5 1.0 0.3

[3,] 0.4 0.3 1.0
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